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ABSTRACT 

This paper addresses ongoing work with the OCP along with hardware and software to enable its use on 
testbeds and platforms which are better suited for embedded processors—and more affordable for research 
teams. 

1.0 INTRODUCTION 

The Open Control Platform (OCP) was instrumental in the success of the capstone demonstration of the 
DARPA Software Enabled Control (SEC) program [1], [2], [3], [4] and was matured by Boeing Phantom 
Works. The OCP is a software infrastructure which serves as a substrate for integrating innovative control 
technologies, and it provides comprehensive support for integrating distributed, heterogeneous components 
while hiding details of platform and communication from the controls developer. 

The OCP enabled eight technology developer groups from academia and industry to implement advances and 
novel control techniques on a T-33 jet instrumented as a UCAV (Unmanned Combat Air Vehicle) surrogate with 
a development time of around 13 months. In the capstone demonstration formation flight [5], autonomous 
landing manoeuvres [6], pursuit-evasion games [7] and other experiments were successfully performed. 

Here, large testbeds were available for the controls experiments—meaning that it was possible to take a 
development platform onto the aircraft. However, few (if any) academic research labs have access to testbeds 
which can afford to take a payload of this size and weight. This paper describes how we are enabling the OCP 
to be a low-overhead research tool by separating the development platform from the deployment platform, and 
providing example testbed implementations including a desktop simulation environment which supports both 
software-only and hardware-in-loop simulation. 

1.1 A note on terms 
In this paper the terms platform and testbed are not used interchangeably. We use the term platform to 
describe the computer architecture, operating system, and/or formfactor used to operate the controls software. 
Examples of platforms are: Linux, QNX, WindowsXP (operating system platforms); i386, ARM, PowerPC 
(hardware architecture platforms); laptop, PC-104 stack, embedded processor (form factor platforms).  
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We use the term testbed to describe the kind of controls system upon which the software is performing. 
Testbeds already used by OCP include F-16, T-33, and Maverick (Helicopter). Future testbeds are described 
in the paper, along with how the OCP can be adapted to facilitate the use of new platforms, as well as new 
testbeds, by external developers. 

    

 (a) T-33 Jet Testbed  (b) Boeing Maverick (A160 (c) SmartBAT Testbed
  Hummingbird Surrogate) 
  Helicopter Testbed 

    

 (d) i386 Laptop Platform  (e) i386 PC104 Platform (f) PowerPC Embedded Platform 

Figure 1: Three testbeds for use with the OCP. Traditional OCP software execution platforms such 
as a laptop are appropriate for testbeds such as 1(a) and 1(b), but are too heavy for testbeds  

such as 1(c). Note that testbeds and platforms are scaled relatively, not globally 

2.0 THE OPEN CONTROL PLATFORM 

The OCP is a software infrastructure designed to assist in the development and testing of control algorithms 
targeted for execution in embedded software.  

The successful integration, testing, and demonstration of the SEC technology for the Capstone Demonstration 
was enabled by the use of OCP, since it provided a layer of abstraction from the vehicle control and avionics. 
This allowed the technology developers to integrate their control algorithms onto testbeds whose avionics 
were classified or ITAR restricted without having access to those testbeds, and it allowed the Boeing 
developers to create the testbed interfaces (avionics and system) within the OCP architecture.  

Furthermore, the OCP could be interfaced with a desktop simulation program to allow for thorough software 
simulation by the application developers prior to the hardware-inthe- loop testing performed by the system 
integrators. This made it possible to develop and perform the necessary testing prior to the flight tests on the 
T-33 testbed.  
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Figure 2: Development and deployment layers of the OCP. Note that the control algorithms may  
now be developed on a separate platform from the deployment platform. Each of the  
NC control algorithms are configured to run on one or more of the NT testbeds,  

and can be written to run on any of the NP platforms. 

As a core technology, the OCP provides an interface to describe software tasks which are either periodic or 
event-driven. These software tasks implement control strategies such as Model-Predictive Control [7], 
performing reach-avoid calculations [5], or executing formation flight [8]. In order to take advantage of this 
core, it is necessary to consider how to develop and deploy those technologies.  

The transparency which enabled avionics to be hidden also allows for independent development of new 
testbeds and platforms. Those testbeds and platforms must be integrated (nontrivially) by an OCP developer. 
To enable those who are not software experts to perform this integration is facilitated by examples to be used 
as templates. 

2.1 Development Improvements 
A design goal of OCP is to reduce the complexity of using existing control algorithms on different testbeds, 
and executing on different platforms. Technology developers (i.e., those who are writing controls algorithms 
through the ControlsAPI) will be able to download the OCP as a development environment. These users will 
be able to implement controls strategies on existing testbeds. OCP developers (i.e., those who are writing 
testbed interfaces or platform interfaces) will be able to reference existing testbed and platform configurations 
for development of new ones. Open-source avionics for off-the-shelf testbeds will make configuration of new 
testbeds more transparent. 

2.2 Deployment Improvements 
One major problem with deploying autonomous systems today is that the development platform and 
deployment platform are often the same. For small-footprint devices (meaning that there is a small amount of 
disk space and/or memory available) it is impossible to build the the control software on that device. Our 
improvements to the deployment process will allow users on any supported development platform to build the 
deployed OCP executable on the development machine. This will allow very small embedded platforms (e.g., 
PXA255) with storage space on the order of tens of megabytes to execute OCP control algorithms (an order of 
magnitude reduction in space requirements). 

For our testbed additions, we are using the UAVs in the Berkeley Aerial Robotics (BEAR) lab to develop 
avionics interfaces for a variety of testbeds, including Yamaha R-50 and RMax helicopters, electric 
helicopters and the fixed-wing Berkeley SmartBAT which is based on the ZAGI flying-wing. 
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The SmartBAT UAV in particular has a payload of about 900 grams, but is inexpensive enough to provide a 
very practical platform for UAV research.  

As part of this project and in the first testbed application, the SmartBAT UAV, we are using the commercially 
available CrossBow MNAV system to provide the hardware interface to the SmartBAT, basic flight controller 
and safety pilot authority of the testbed [9], [10]. The MNAV system is supported by an open source autopilot 
and ground station system [11]. We have additionally integrated a desktop simulator into the system, which is 
based on the open source CRRCSim simulator, which was developed for model airplanes including the ZAGI 
flying-wing testbed [12]. A screenshot of this simulator in operation is shown in Figure 3. 

 

Figure 3: A screenshot of the modified CRRCSim simulator running on the same desktop computer 
as the MNAV autopilot ground station system. The ZAGI aircraft can be seen in the distance  

above the clouds in the upper right window, and as the red and yellow swept-wing  
shape near the upper right waypoint in the ground station viewer. 
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In each case the necessary interfaces are being incorporated into the open source releases of the projects. At 
this time they have been fully included in the CRRCSim project, however only in a precompiled Windows 
binary release for the MNAV Autopilot. 

This desktop simulation can be operated as a software system or a hardware-in-the loop simulation with the 
MNAV hardware system, allowing a similar development environment as provided in the SEC program for 
OCP application developers. To allow the software-only simulation, an interface was developed for 
CRRCSim which emulates the Crossbow Technology MNAV vehicle sensor suite and servo control board. 

This simulation system will be incorporated into the OCP system as the simulation environment for this 
testbed, and it will be applied to other testbeds that can be operated with the CRRCSim system and MNAV 
hardware.  

The OCP has proven itself to be a very useful and effective tool for control development on UAV systems. 
However its use and availability has been largely limited to SEC program participants due to limited testbed 
availability and complexity of adding to the core interfaces. Our team is working to provide an Open Source 
and easily accessible and usable version of OCP such that it is available to all in the controls research and 
development community. 

Prior to the conference dates, the OCP development, deployment, core, and technology developer sources and 
binaries will be available through the ESCHER Research Institute. Portions of the system are currently 
available through the CRRCSim and MNAV Autopilot releases. This release will include increased 
configurability and demonstration examples for its use with common processing platforms and UAV testbeds. 
In our presentation will be providing detailed information on how to obtain these releases. 

3.0 CONCLUSION 

The contribution of this work is to reduce the overhead required for an institution with interesting algorithms 
for autonomous behavior to step into the domain of testing. At this time, investment in the hundreds of 
thousands of dollars (for rotorcraft) is required in order to carry a modest computing platform. 

Our work has been to separate the archaic build process from the execution platform, opening up the 
computational venue to machines which are closer to embedded platforms than general computing platforms, 
and more accessible to researchers, and to integrate a desktop simulation environment for small UAVs. 
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